TUGAS TERSTRUKTUR I


1. Menurut Louis de Broglie bahwa elektron mempunyai sifat gelombang sekaligus juga partikel. Jelaskan keterkaitannya dengan teori mekanika kuantum dan teori orbital molekul.

Jawab: 

Louis de Broglie mengemukakan pendapatntya bahwa partikel yang begerak padaatom mempunyai sifat gelombang. Seperti halnya petir dan kilat, kilat yang menunjukan sifat gelombang berbentuk cahaya. Sedangkan suara petir menunjukkan sifat partikel. Pada teori mekanika kuantum dikemukakan oleh Bohr, bahwa tingkat energi pada elektron struktur atom tingkat energi elektron digunakan untuk menerangkan terjadinya spektrum atom yang dihasilkan oleh atom yang mengeluarkan energy berupa radiasi cahaya. Spektrum garis menunjukkan elektron dalam atom hanya dapat beredar pada lintasan-lintasan dengan tingkat energy tertentu. Pada lintasannya elektron dapat beredar tanpa pemacaran atau penyerapan energi.
Oleh karena itu energi elektron tidak berubah sehingga lintasannya tetap. Pada akhirnya Louis de Broglie menyimpulkan bahwa materi bersifat partikel sebagai gelombang. Inilah yang menjadi adanya teori mekanika kuantum atau mekanika gelombang. Pada teori orbital molekul dimulai dari energi yang ikatannya rendah ke ikatan yang tinggi. Pada ketiga teori ini menggunakan energi sebagai pembuktiannya.


    2. Bila absorpsi sinar UV oleh ikatan rangkap menghasilkan promosi elektron ke orbital yang berenergi lebih tinggi. Transisi elektron manakah memerlukan energi terkecil bila sikloheksena berpindah ke tingkat tereksitasi?

Jawab :

     Penyerapan sinar tampak atau UV menyebabkan terjadinya eksitasi molekul dari ground state (energi dasar) ke tingkat Exited state (energi yang lebih tinggi. Pengabsorbsian sinar UV atau sinar tampak oleh suatu molekul menghasilkan eksitasi elektron bonding. Akibatnya panjang gelombang absorbsi maksimum dapat dikorelasikan dengan jenis ikatan yang ada dalam molekul yang diselidiki. Oleh karena itu spektroskopi serapan molekul berguna untuk mengidentifikasi gugus fungsional yang ada dalam suatu molekul. Akan tetapi yang lebih penting adalah penggunaan spektroskopi serapan UV dan sinar tampak untuk penentuan kuantitatif senyawa-senyawa yang mengandung gugus pengabsorbsi.
      Pada transisi elektronik inti-inti atom dapat dianggap berada pada posisi yang tepat. Hal ini dikenal dengan prinsip Franck-Condon. Disamping itu dalam proses transisi ini tidak semua elektron ikatan terpromosikan ke orbital antiikatan. Berdasarkan jenis orbital tersebut maka, jenis-jenis transisi elektronik dibedakan menjadi empat macam, yakni:
1) Transisi σ → σ*
2) Transisi π → π*
3) Transisi n → π*
4) Transisi n → σ*


Keterangan· σ : senyawa-senyawa yang memiliki ikatan tunggal
· π : senyawa-senyawa yang memiliki ikatan rangkap
· n menyatakan orbital non-ikatan: untuk senyawa-senyawa yang memiliki elektron bebas.
· σ* dan π* merupakan orbital yang kosong (tanpa elektron), orbital ini akan terisi elektron ketika telah atau bila terjadi eksitasi elektron atau perpindahan elektron atau promosi elektron dari orbital ikatan.

    Energi yang diperlukan untuk menyebabkan terjadinya transisi berbeda antara transisi satu dengan transisi yang lain. Transisi σ ke σ* memerlukan energi paling besar, sedangkan energi terkecil diperlukan untuk transisi dari n ke π. Untuk memberikan gambaran dan memudahkan pemahaman tentang jenis transisi beserta perbandingan energi yang diperlukan dapat dilihat pada gambar berikut:


 Pada gambar di atas transisi dari σ ke π* sebenarnya tidak ada. Transisi demikian dapat pula terjadi tapi sangat kecil sehingga tidak dapat diamati pada spektrum atau spektra. Karena bertolak belakang dengan kaidah seleksi.


  Pada setiap jenis transisi elektronik yang terjadi, terdapat karakter dan melibatkan energi yang berbeda. Suatu kromofor dengan pasangan elektron bebas (n) dapat menjalani transisi dari orbital non-ikatan (n) ke orbital anti-ikatan, baik pada obital sigma bintang (α*) maupun phi bintang(π*). Sedangkan, kromofor dengan elektron ikatan rangap (menghuni orbital phi) akan menjalani transisi dari orbital π ke orbital π*. Demikian seterusnya untuk jenis transisi yang lain.
   Dalam penentuan struktur molekul, tansisi σ → σ* tidak begitu penting karena puncak absorbsi berada pada daerah ultraviolet vakum yang berarti tidak terukur oleh peralatan atau instrumen pada umumnya. Walaupun transisi π→π* pada ikatan ganda terisolasi mempunyai puncak absorbsi di daerah UV vakum tetapi transisi π→π* tergantung pada konjugasi ikatan ganda dengan suatu gugus fungsi substituen. Akibatnya transisi π→π* pada ikatan ganda terkonjugasi mempunyai puncak absorbsi pada daerah ultraviolet dekat, dengan panjang gelombang lebih besar dari 200 nm. Dengan demikian transisi yang penting dalam penentuan struktur molekul adalah transisi π→π* serta beberapa transisi n→π* dan n→σ*.  
Absorpsi radiasi UV-v mengakibatkan transisi elektronik, yaitu promosi elektron-elektron dari orbital keadaan dasar yang berenergi rendah keorbital keadaan tereksitasi yang berenergi lebih tinggi. Transisi ini memerlukan energi 40 – 150 kkal/mol. Panjang gelombang dimana absorpsi itu terjadi bergantung pada kekuatan elektron itu terikat dalam molekul. Elektron dalam suatu ikatan kovalen tunggal terikat dengan kuat sehingga diperlukan radiasi berenergi tinggi atau panjang gelombang pendek untuk eksitasinya, sedangkan elektron dalam ikatan rangkap dan ganda tiga lebih mudah dieksitasikan keorbital yang lebih tinggi sehingga memerlukan radiasi berenergi lebih rendah. 


Komentar

Postingan populer dari blog ini

ISOMERI STRUKTUR SENYAWA HIDROKARBON DAN SISTEM NOMENKLATUR

KLASIFIKASI SENYAWA ORGANIK

STEREOKIMIA II