REAKSI RADIKAL BEBAS


REAKSI RADIKAL BEBAS

A.    Pengertian
Radikal bebas adalah molekul yang kehilangan elektron, sehingga molekul tersebut menjadi tidak stabil dan selalu berusaha mengambil elektron dari molekul atau sel lain. Dengan kata lain radikal bebas merupakan atom/gugus yang memiliki satu atau lebih elektron yang tidak berpasangan. Radikal bebas ini merupakan spesies yang sangat reaktif sehingga umurnya pendek. Radikal bebas dibentuk jika ikatan terbelah menjadi dua yang sama-sehingga setiap atom mendapat satu dari dua elektron yang dipakai untuk berikatan. Disebut juga sebagai pembelahan homolitik. Reaksi substitusi merupakan reaksi yang berhubungan dengan reaksi radikal bebas.
Contoh penulisan reaksi radikal bebas sebagai hasil dari pemecahan homolitik.
     Cl2 è Cl + Cl
Mekanisme reaksi radikal menggunakan panah bermata tunggal untuk menjelaskan pergerakan electron tunggal.

Ada dua cara yang digunakan untuk menulis rumus radikal bebas, yaitu: 
1.      Dengan cara rumus lewis, yakni dengan menggambarkan semua elektron pada atom, baik yang berpasangan maupun tidak dengan lambang berupa titik.
2.      Dengan hanya menuliskan elektron yang tidak berpasangan dengan lambang titik. lambang ini lazim di pakai pada penulisan reaksi radikal bebas
contoh: Cl• , RO•, RN•

B.     Sumber-sumber radikal bebas
Inisiator adalah zat yang dalam kondisi reaksi tertentu dapat menghasilkan sejumlah radikal bebas yang memungkinkan reaksi radikal bebas berlanjut. Berikut disajikan beberapa senyawa yang dapat menghasilkan radikal bebas.
1)      Halogen (Cl2, Br2, F2, dan seterusnya)
2)      Peroksida (HOOH, atau ROOR)
3)      Senyawa azo (RNNR)
4)      Alkil halida (R-X)
5)      Hipoklorit (R-O-Cl)

C.    Struktur kimia radikal bebas
Radikal bebas dapat terbentuk in-vivo dan in-vitro secara:
1)      Pemecahan satu molekul normal secara homolitik menjadi dua. Proses ini jarang terjadi pada sistem biologi karena memerlukan tenaga yang tinggi dari sinar ultraviolet, panas, dan radiasi ion.
2)      Kehilangan satu elektron dari molekul normal
3)      Penambahan elektron pada molekul normal 

Pada radikal bebas elektron yang tidak berpasangan tidak mempengaruhi muatan elektrik dari molekulnya, dapat bermuatan positif, negatif, atau netral.

D.    Mekanisme umum reaksi radikal bebas
1)      Inisiasi
Tahap inisiasi merupakan tahap awal pembentukan radika-radikal bebas dengan pembelahan homolitik sehingga nasing-masing atom terpisah dengan membawa satu elektron. Terlepas dari itu, inisiasi dapat terbentuk secara sepontan atau karena pengaruh panas/cahaya. Selain itu juga radikal bebas dapat terbentuk melalui transfer satu elektron (dengan melepas dan menerima elektron).

2)      Propagasi
Setelah terbentuk radikal bebas dengan kereaktifan yang tinggi yang kemudian dapat bereaksi dengan setiap spesies yang ditemukan. Pada tahap ini akan terbentuk radikal bebas yang baru, karena radikal bebas yang dihasilkan pada tahap awal bereaksi dengan molekul lain. Selanjutnya radikal bebas baru tersebut dapat pula bereaksi dengan molekul atau radikal bebas yang lain. Oleh karena itu dalam proses propagasi dikatakan terjadi reaksi berantai. Apabila radikal bebasnya sangat reaktif, misalnya radikal alkil, maka terjadi rantai yang panjang karena melibatkan sejumlah besar molekul. Apabila radikal bebasnya kereaktifannya rendah, misalnya radikal aril, maka kemampuannya bereaksi rendah sekali, sehingga rantai yang terjadi pendek, bahkan mungkin tidak terjadi rantai. 


3)      Terminasi
Langkah berikutnya adalah destruksi radikal bebas atau langkah terminasi, yang ditandai oleh kombinasi radikal bebas yang sama ataupun yang berbeda,dan langkah ini mengakhiri reaksi radikal bebas.


E.     Reaksi Substitusi Radikal Bebas pada Senyawa Alifatik
Hubungan antara struktur substrat dan kereaktifannya dalam reaksi radikal bebas adalah
1)      Pada alkana. Kereaktifan H30 > H20 > H10 (H30 : H tersier dan seterusnya)
2)      Atom H alilik dapat dobrominasi dengan pereaksi NBS
3)      Atom H tersier mudah dioksidasi

a)      Halogenasi pada atom C gugus alkil
Alkana dapat diklorinasi atau dibrominasi dengan mereaksikannnya pada klor atau brom dibawah pengaruh cahaya tampak atau cahaya ultraviolet.
b)      Halogenasi Alilik
Alkena dapat dihalogenasi pada posisi alilik dengan menggunakan sejumlah pereaksi seperti N-bromosuksinimida (disingkat NBS) dengan rumus struktur adalah sebagai berikut:
Peroksida
Reaksi : -C=C–C–H + NBS-C=C–C–Br
CCl4
Brominasi yang menggunakan NBS dengan pelarut nonpolar CCl4 dinamakan reaksi Wohl-Ziegler. Dalam reaksi ini diperlukan inisiator senyawa peroksida, atau cahaya ultraviolet. Pereksi NBS dapat pula digunakan untuk melakukan brominasi pada: posisi- terhadap gugus karbonil, ikatan ganda-tiga, dan cincin aromatik. bila pada suatu senyawa terdapat ikatan rangkap dan ikatan ganda-tiga, maka yang diserang adalah poisisi- terhadap ikatan ganda-tiga. Dauber dan McCoy menyimpulkan bahwa mekanisme brominasi alilik merupakan mekanisme radikal bebas. Reaksi ini tidak akan berlangsung tanpa inisiator, yang berupa Br•. Diungkapkan pula bahwa yang mengabstraksi atom H dalam substrat adalah atom Br. Setelah terjadi tahap inisiasi yang mengahasilkan Br•, maka langkah-langkah dalam tahap propagasinya adalah :
1)      Br• + RH → R • + HBr
2)      R• + Br2 → RBr + Br
Penghasil Br2 dalam reaksi ini adalah reaksi antara NBS dan HBr yang dihasilkan dari persamaan reaksi (1) diatas.
Dengan demikian fungsi NBS adalah sebagai sumber brom dengan konsentrasi yang rendah dan mengikat HBr yang dibebaskan dari persamaan reaksi (1).

c)      Hidroksilasi pada atom C alifatik 
Senyawa alkohol dapat dihasilkan dari reaksi oksidasi senyawa-senyawa yang mengndung ikatan -C-H. Karena pada umumnya ikatan –C–H tersebut merupakan C tersier maka alkohol yang diperoleh adalah suatu alkohol tersier. Hal disebabkan karena ikatan -C–H tersier memang lebih mudah diserang radikal bebas daripada ikatan C-H primer dan sekunder. Dalam pembentukan alkohol tersier ini, hasil yang terbaik dapat dicapai dengan menggunakan O3 dan substratnya diserapkan pada silika gel. Reaksi: R3CH R3COH è Silika gel

Komentar

Postingan populer dari blog ini

ISOMERI STRUKTUR SENYAWA HIDROKARBON DAN SISTEM NOMENKLATUR

STEREOKIMIA II

KLASIFIKASI SENYAWA ORGANIK